首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3301篇
  免费   32篇
  国内免费   170篇
安全科学   95篇
废物处理   195篇
环保管理   290篇
综合类   586篇
基础理论   775篇
环境理论   2篇
污染及防治   1126篇
评价与监测   238篇
社会与环境   183篇
灾害及防治   13篇
  2023年   17篇
  2022年   68篇
  2021年   39篇
  2020年   24篇
  2019年   37篇
  2018年   116篇
  2017年   50篇
  2016年   76篇
  2015年   84篇
  2014年   89篇
  2013年   265篇
  2012年   88篇
  2011年   157篇
  2010年   138篇
  2009年   150篇
  2008年   160篇
  2007年   186篇
  2006年   140篇
  2005年   117篇
  2004年   143篇
  2003年   138篇
  2002年   114篇
  2001年   239篇
  2000年   143篇
  1999年   71篇
  1998年   39篇
  1997年   47篇
  1996年   34篇
  1995年   40篇
  1994年   42篇
  1993年   41篇
  1992年   30篇
  1991年   35篇
  1990年   27篇
  1989年   32篇
  1988年   20篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   18篇
  1983年   22篇
  1982年   22篇
  1981年   16篇
  1980年   11篇
  1979年   13篇
  1978年   12篇
  1977年   8篇
  1975年   12篇
  1973年   9篇
  1972年   10篇
排序方式: 共有3503条查询结果,搜索用时 31 毫秒
31.
In an effort to assess the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of Riyadh, Saudi Arabia, PM10 samples were collected during December 2010. Diagnostic PAH concentration ratios were used as a tool to identify and characterize the PAH sources. The results reflect high PM10 and PAH concentrations (particulate matter (PM)?=?270–1,270 μg/m3). The corresponding average PAH concentrations were in the range of 18?±?8 to 1,003?±?597 ng/m3 and the total concentrations (total PAHs (TPAHs) of 17 compounds) varied from 1,383 to 13,470 ng/m3 with an average of 5,871?±?2,830 ng/m3. The detection and quantification limits were 1–3 and 1–10 ng/ml, respectively, with a recovery range of 42–80 %. The ratio of the sum of the concentrations of the nine major non-alkylated compounds to the total (CPAHs/TPAHs) was 0.87?±?0.10, and other ratios were determined to apportion the PM sources. The PAHs found are characteristic for emissions from traffic with diesel being a predominant source.  相似文献   
32.
Transhumant pastoralism is one of the dominant livestock production systems in West Africa, and it is characterized by seasonal and cyclical movement of varying degrees between complementary ecological areas. The common pattern of transhumance is moving herds from areas with pasture and water scarcity such as the Sahelian zone to areas where the forage and water are found, often in the sub-humid zone. Whereas the transhumant herds from the Sahel are mainly Zebu breeds, endemic ruminant livestock (ERL) are the dominant breeds in sub-humid zone of West Africa because of their tolerance to tsetse-borne trypanosomosis disease. These livestock fulfill different functions in the livelihood of rural communities in the region. To identify potential areas of interventions for sustainable natural resource management to improve ERL productivity, a desk study that included spatial mapping was performed to review and document the existing knowledge on transhumance in West Africa. Additionally, group discussions were held to analyze the (actual or potential) effects of transhumant herds on natural resource management and ERL in the sub-humid zone. This study covered sub-humid zone in The Gambia, Guinea, Mali and Senegal. The key question we addressed in this study was as follows: What are the key trends and changes in transhumant pastoralism and how do these impact sustainable management of natural resources including endemic livestock? The results of the desk study and group discussions showed that there have been more southerly movements by transhumant pastoralists into the sub-humid zone over the past three decades and this has contributed to growing competition for grazing resources. The presence of transhumant herds in the sub-humid zone has a potential impact on management and conservation of ERL through crossbreeding with transhumant Zebu breeds from the Sahel but only study sites in Mali showed a high risk.  相似文献   
33.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines has led to an interest in finding alternative fuels to diesel. Emission control and engine efficiency are two of the most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V has forced research towards developing new technologies for combating engine emissions. This paper examines the effects of compression ratio, swirl augmentation techniques and ethanol addition on the combustion of compressed natural gas (CNG) blended with Honge oil methyl esters (HOME) in a dual fuel engine. The present results show that the combustion of HOME and 15% ethanol blend with CNG induction in a dual-fuel engine operated in optimized parameters at an injection timing of 27° Before Top Dead Centre and a compression ratio of 17.5 resulted in acceptable combustion emissions and improved brake thermal efficiencies. The implementation of swirl augmentation techniques increased brake thermal efficiencies (BTEs) and considerably reduced combustion emissions such as smoke, HC, CO and NOx. The addition of ethanol also increased BTEs. However, at more than 15% of ethanol in HOME, NOx emissions increased dramatically.  相似文献   
34.
Renewable and alternative fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues (Yaliwal et al. 2013. International Journal of Sustainable Engineering, doi:10.1080/19397038.2013.801530. Zhu et al. 2011a, Applied Thermal Engineering 31 (14–15): 2271–2278; Zhu et al. 2011b, Fuel 90: 1743-1750; Banapurmath, Tewari, and Hosmath 2008, Renewable Energy 33: 2007-2018; Banapurmath 2009, “Performance, Combustion and Emission Characteristics of a Single Cylinder Direct Injection CI Engine Operated on Dual Fuel Mode Using Honge Oil and Producer Gas.” PhD thesis, 1–195; Banapurmath et al. 2011, Waste and Biomass Valorization 2: 1–11). In this context, the main objective of the present work is to study methods of biofuel production such as Honge oil methyl ester (HOME) using a conventional transesterification process and bioethanol from the Calliandra calothyrsus shrub using a new pretreatment method known as hydrothermal explosion. Further, experimental investigations were carried out on a single-cylinder, four-stroke, direct-injection stationary diesel engine operating in a dual-fuel mode using HOME, bioethanol and producer gas combinations to determine its performance, combustion and emission characteristics. The performance of the dual-fuel engine was analyzed at optimized engine conditions. HOME-Bioethanol (BE) blends such as HOME+ 5% bioethanol (BE5), HOME+ 10% bioethanol (BE10) and HOME+ 15% bioethanol (BE15) were prepared by adding bioethanol to HOME (on volume basis) in different proportions ranging from 5 to 15% with an increment of 5%. In this present work, the effect of different BE blends on the performance of producer gas fuelled dual fuel engine was studied. Experimental investigation on dual fuel engine using BE5-Producer gas operation resulted in up to 4–9% increased brake thermal efficiency with decreased hydrocarbon (HC), carbon monoxide (CO) and marginally increased nitric oxide (NOx) emission levels compared to HOME-Producer gas, BE10-producer gas and BE15-producer gas mode of operation. However, it was observed that, the overall performance of BE-producer gas operation was found to be lower compared to diesel-producer gas operation.  相似文献   
35.

Open-air burning of agricultural wastes from crops like corn, rice, sorghum, sugar cane, and wheat is common practice in Mexico, which in spite limiting regulations, is the method to eliminate such wastes, to clear the land for further harvesting, to control grasses, weeds, insects, and pests, and to facilitate nutrient absorption. However, this practice generates air pollution and contributes to the greenhouse effect. Burning of straws derived from the said crops was emulated in a controlled combustion chamber, hence determining emission factors for particles, black carbon, carbon dioxide, carbon monoxide, and nitric oxide throughout the process, which comprised three apparent stages: pre-ignition, flaming, and smoldering. In all cases, maximum particle concentrations were observed during the flaming stage, although the maximum final contributions to the particle emission factors corresponded to the smoldering stage. The comparison between particle size distributions (from laser spectrometer) and black carbon (from an aethalometer) confirmed that finest particles were emitted mainly during the flaming stage. Carbon dioxide emissions were also highest during the flaming stage whereas those of carbon monoxide were highest during the smoldering stage. Comparing the emission factors for each straw type with their chemical analyses (elemental, proximate, and biochemical), some correlations were found between lignin content and particle emissions and either particle emissions or duration of the pre-ignition stage. High ash or lignin containing-straw slowed down the pre-ignition and flaming stages, thus favoring CO oxidation to CO2.

  相似文献   
36.
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.

Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.  相似文献   

37.
Environmental Science and Pollution Research - Pollution-induced community tolerance (PICT) has been used to demonstrate effects of sediment contamination on microbes and meiofauna. Our study...  相似文献   
38.
This paper examines consumer attitudes and behavior on the use of plastic and cloth bags in Eski?ehir, Turkey. To this end, a structural equation model is proposed. Environmental consciousness regarding the use of plastic bags, social pressure, support for the banning of plastic bags, the intention to use cloth bags and behavior to reduce plastic bag use are employed as latent variables in the model. The intention to use cloth bags and the behavior to reduce the use of plastic bags are defined as endogenous latent variables in the structural model. In the conclusion of the study, it is identified that consumers who are environmentally conscious and feel under social pressure, tend to reduce the use of plastic bags and switch to using cloth bags.  相似文献   
39.
This work focuses on the exposure of maize plants to nanomolar concentrations of Cd, which is relevant for agricultural soils cropped with food and feed plants. Maize plants were cultivated in nutrient solution at 0.8 or 20 nM Cd during the vegetative growth stages. No significant hormesis or toxic effects of Cd were observed on maize growth, but a decrease in the allocation of Cd to shoots between the 0.8 and 20 nM Cd exposures revealed that the plants already responded to these low concentrations of Cd according to a shoot Cd excluder strategy. The Cd, Cu and Zn concentrations in shoots decreased with time as the result of an early decrease in the root/shoot ratio and of a decrease in the coefficient of allocation to aboveground for Zn and Cd at 20 nM. As a consequence, shoots of young plants were richer in micronutrients Cu and Zn but also in toxic Cd. The rate of delivery of Cd, Cu and Zn from xylem sap was successfully used to predict the time course of concentrations of Cd, Cu and Zn in the shoot. However, it overestimated the actual concentrations of Cd in the shoot, presumably because the reallocation of this trace element from shoots back to roots was not taken into account.  相似文献   
40.
The main limitation of a conventional palm oil mill effluent (POME) ponding system lies in its inability to completely decolourise effluent. Decolourisation of effluent is aesthetically and environmentally crucial. However, determination of the optimum process parameters is becoming more complex with the increase of the number of coagulants and responses. The primary objective of this study is to determine the optimum polymeric coagulant in the coagulation–flocculation process of palm oil mill effluent by considering all output responses, namely lignin–tannin, low molecular mass coloured compounds (LMMCC), chemical oxygen demand (COD), ammonia nitrogen (NH3-N), pH and conductivity. Here, multiple-objective optimisation on the basis of ratio analysis (MOORA) is employed to discretely measure multiple response characteristics of five different types of coagulants as a function of assessment value. The optimum coagulant is determined based on the highest assessment value and was identified as QF25610 (cationic polyacrylamide). On the other hand, the lowest assessment value was represented by AN1800 (anionic polyacrylamide). This study highlights the simplicity of MOORA approach in handling various input and output parameters, and it may be useful in other wastewater treatment processes as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号